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Abstract
We present a system that allows a user to
search a large linguistically annotated cor-
pus using syntactic patterns over dependency
graphs. In contrast to previous attempts to this
effect, we introduce a light-weight query lan-
guage that does not require the user to know
the details of the underlying syntactic represen-
tations, and instead to query the corpus by pro-
viding an example sentence coupled with sim-
ple markup. Search is performed at an interac-
tive speed due to an efficient linguistic graph-
indexing and retrieval engine. This allows
for rapid exploration, development and refine-
ment of syntax-based queries. We demon-
strate the system using queries over two cor-
pora: the English wikipedia, and a collec-
tion of English pubmed abstracts. A demo of
the wikipedia system is avilable at: https:

//allenai.github.io/spike/ .

1 Introduction

The introduction of neural-network based models
into NLP brought with it a substantial increase in
syntactic parsing accuracy. We can now produce
accurate syntactically annotated corpora at scale.
However, the produced representations themselves
remain opaque to most users, and require substan-
tial linguistic expertise to use. Patterns over syn-
tactic dependency graphs1 can be very effective
for interacting with linguistically-annotated cor-
pora, either for linguistic retrieval or for informa-
tion and relation extraction (Fader et al., 2011; Ak-
bik et al., 2014; Valenzuela-Escárcega et al., 2015,

1In this paper, we very loosely use the term “syntactic”
to refer to a linguistically motivated graph-based annotation
over a piece of text, where the graph is directed and there is
a path between any two nodes. While this usually implies
syntactic dependency trees or graphs (and indeed, our system
currently indexes Enhanced English Universal Dependency
graphs (Nivre et al., 2016; Schuster and Manning, 2016)) the
system can work also with more semantic annotation schemes
e.g, (Oepen et al., 2015), given the availability of an accurate
enough parser for them.

2018). However, their use in mainstream NLP as
represented in ACL and affiliated venues remain
limited. We argue that this is due to the high barrier
of entry associated with the application of such pat-
terns. Our aim is to lower this barrier and allow also
linguistically-naı̈ve users to effectively experiment
with and develop syntactic patterns. Our proposal
rests on two components:

(1) A light-weight query language that does not
require in-depth familiarity with the underlying
syntactic representation scheme, and instead lets
the user specify their intent via a natural language
example and lightweight markup.

(2) A fast, near-real-time response time due to effi-
cient indexing, allowing for rapid experimentation.

Figure 1 (next page) shows the interface of our
web-based system. The user issued the query:

〈〉founder:[e]Paul was a t:[w]founder of
〈〉entity:[e]Microsoft.

The query specifies a sentence (Paul was a founder
of Microsoft) and three captures: founder, t and
entity. The founder and entity captures should have
the same entity-type as the corresponding sentence
words (PERSON for Paul and ORGANIZATION
for Microsoft), and the t capture should have
the same word form as the one in the sentence
(founder) . The syntactic relation between the
captures should be the same as the one in the
sentence.

The query was translated into a graph-based syn-
tactic representation, which is shown in the figure
below the query, where each graph-node is associ-
ated with the query word that triggered it. The sys-
tem also returned a list of matched sentences. The
matched tokens for each capture group (founder, t
and entity) are highlighted. The user can then issue
another query, browse the results list, or download
all the results as a tab-separated values file.

https://allenai.github.io/spike/
https://allenai.github.io/spike/


Figure 1: Syntactic Search System

2 Existing syntactic-query languages

While several rich query languages over linguis-
tic tree and graph structure exist, they require a
substantial amount of expertise to use. The user
needs to be familiar not only with the syntax of
the query language itself, but to also be intimately
familiar with the specific syntactic scheme used in
the underlying linguistic annotations. For exam-
ple, in Odin (Valenzuela-Escárcega et al., 2015), a
dedicated language for pattern-based information
extraction, the same rule as above is expressed as:

- label: Person
type: token
pattern: |
[entity="PERSON"]+

- label: Organization
type: token
pattern: |
[entity="ORGANIZATION"]+

- label: founded
type: dependency
pattern: |

trigger = [word=founded]
founder:Person = >nsubj
entity:Organization = >nmod

The Spacy NLP toolkit2 also includes pattern
matcher over dependency trees,using JSON based
syntax:
[{"PATTERN": {"ORTH": "founder"},
"SPEC": {"NODE_NAME": "t"}},

{"PATTERN": {"ENT_TYPE": "PERSON"}},
"SPEC": {"NODE_NAME": "founder",

"NBOR_RELOP": ">nsubj",
"NBOR_NAME": "t"}},

{"PATTERN": {"ENT_TYPE": "ORGANIZATION"},
"SPEC": {"NODE_NAME": "entity",

"NBOR_RELOP": ">nmod",
"NBOR_NAME": "t"}}]

2https://spacy.io/

Stanford’s Core-NLP package (Manning et al.,
2014) includes a dependency matcher called SEM-
GREX,3 which uses a more concise syntax:
{ner:PERSON}=founder
<nsubj ({word:founder}=t

>nmod {ner:ORG}=entity)

The dep search system4 from Turku university
(Luotolahti et al., 2017) is designed to provide
a rich and expressive syntactic search over large
parsebanks. They use a lightweight syntax and sup-
port working against pre-indexed data, though they
do not support named captures of specific nodes.
PERSON <nsubj founder >nmod ORG

While the different systems vary in the verbose-
ness and complexity of their own syntax (indeed,
the Turku system’s syntax is rather minimal), they
all require the user to explicitly specify the de-
pendency relations between the tokens, making it
challenging and error-prone to write, read or edit.
The challenge grows substantially as the complex-
ity of the pattern increases beyond the very simple
example we show here.

Closest in spirit to our proposal, the PROP-
MINER system of Akbik et al. (2013) which lets the
user enter a natural language sentence, mark spans
as subject, predicate and object, and have a rule
being generated automatically. However, the sys-
tem is restricted to ternary subject-predicate-object
patterns. Furthermore, the generated pattern is an
over-restricted rule written in a path-expression
SQL variant (SerQL, (Broekstra and Kampman,

3https://github.com/explosion/
spaCy/blob/master/spacy/matcher/
dependencymatcher.pyx

4http://bionlp-www.utu.fi/dep_search/
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2003)), which the user then needs to manually edit.
For example, to the best of our understanding, our
query above will be translated to:
SELECT subject, predicate, object
FROM predicate.3 nsubj subject,

predicate.3 nmod object,
WHERE subject POS NNP
AND predicate.3 POS NN
AND object POS NNP
AND subject TEXT PAUL
AND predicate.3 TEXT founder
AND object TEXT Microsoft
AND subject FULL_ENTITY
AND object FULL_ENTITY

All these systems require the user to closely in-
teract with linguistic concepts and explicitly spec-
ify graph-structures, posing a high barrier of entry
for non-expert users. They also slow down expert
users: formulating a complex query may require
a few minutes. Furthermore, many of these query
languages are designed to match against a provided
sentence, and are not indexable. This requires it-
erating over all sentences in the corpus attempting
to match each one, requiring substantial time to
obtain matches from large corpora.

Augustinus et al. (2012) describe a system for
syntactic search by example, which retrieves tree
fragments and which is completely UI based. Our
system takes a similar approach, but replaces the
UI-only interface with an expressive textual query
language, allowing for richer queries. We also
return node matches rather than tree fragments.

3 Syntactic Search by Example

We propose a substantially simplified language,
that has the minimal syntax and that does not re-
quire the user to know the underlying syntactic
schema upfront (though it does not completely hide
it from the user, allowing for exposure over time,
and allowing control for expert users who under-
stand the underlying syntactic annotation scheme).

The query language is designed to be linguis-
tically expressive, simple to use and amenable to
efficient indexing and query. The simplicity and in-
dexing requirements do come at a cost, though: we
purposefully do not support some of the features
available in existing languages. We expect these
features to correlate with expertise.5 At the same
time, we also seamlessly support expressing arbi-
trary sub-graphs, a task which is either challenging
or impossible with many of the other systems.

5Example of a query feature we do not support is quantifi-
cation, i.e., “nodes a and b should be connected via a path that
includes one or more ‘conj’ edges”.

The language is based on the following principles:
(1) The core of the query is a natural language
sentence.
(2) A user can specify the tokens of interest and
constraints on them via lightweight markup over
the sentence.
(3) While expert users can specify complex token
constraints, effective constraints can be specified
by pulling values from the query words.

The required syntactic knowledge from the user,
both in terms of the syntax of the query language
itself and in terms of the underlying linguistic for-
malism, remains minimal.

4 Graph Query Formalism
The language is structured around between-token
relations and within-token constraints, where to-
kens can be captured.

Formally, our query G = (V,E) is a labeled di-
rected graph, where each node vi ∈ V corresponds
to a token, and a labeled edge e = (vi, vj , `) ∈ E
between the nodes corresponds to a between-token
syntactic constraint. This query graph is then
matched against parsed target sentences, looking
for a correspondence between query nodes and
target-sentence nodes that adhere to the token and
edge constraints.

For example, the following graph specifies three
tokens, where the first and second are connected via
an ‘xcomp’ relation, and the second and third via
a ‘dobj’ relation. The first token is unconstrained,
while the second token must have the POS-tag of
VB, and the third token must be the word home.

Sentences whose syntactic graph has a subgraph
that aligns to the query graph and adheres to the
constraints will be considered as matches. Example
of such matching sentences are:

- John wantedw to gov homeh after lunch.
- It was a place she decidedw to callv her homeh.

The <w>, <v> and <h> marks on the nodes denote
named captures. When matching a sentence, the
sentence tokens corresponding to the graph-nodes
will be bound to variables named ‘w’, ‘v’ and ‘h’,
in our case {w=wanted, v=go, h=home} for
the first sentence and {w=decided, v=call,
h=home} for the second. Graph nodes can also be
unnamed, in which case they must match sentence
tokens but will not bind to any variable. The graph
structure is not meant to be specified by hand,6 but

6Indeed, we currently do not even expose a textual repre-



rather to be inferred from the example based query
language described in the next section (an example
query resulting in this graph is “They w:wanted to
v:[tag]go h:[word]home”).

Between-token constraints correspond to labeled
directed edges in the sentence’s syntactic graph.

Within-token constraints correspond to proper-
ties of individual sentence tokens.7 For each prop-
erty we specify a list of possible values (a disjunc-
tion) and if lists for several properties are provided,
we require all of them to hold (a conjunction). For
example, in the constraint tag=VBD|VBZ&lemma=buy
we look for tokens with POS-tag of either VBD or
VBZ, and the lemma buy. The list of possible values
for a property can be specified as a pipe-separated
list (tag=VBD|VBZ|VBN) or as a regular expression
(tag=/VB[DZN]/).

5 Example-based User-friendly Query
Language

The graph language described above is expressive
enough to support many interesting queries, but it
is also very tedious to specify query graphs G, es-
pecially for non-expert users. We propose a simple
syntax that allows to easily specify a graph query
G (nodes with names and constraints, connected
by labeled edges) using a textual query q that takes
the form of an example sentence and lightweight
markup. The user writes queries q and can observe
the resulting graphs G.

Let s = w1, ..., wn be a proper English sentence.
Let D be its dependency graph, with nodes wi and
labeled edges (wi, wj , `). A corresponding tex-
tual query q takes the form q = q1, ..., qn, where
each qi is either a word qi = wi, or a marked
word qi = m(wi). A marking of a word takes the
form: :word (unnamed capture) name:word (named
capture) or name:[constraints]word , :[constraints]word
(named and unnamed constrained capture). Con-
sider the query:

John w:wanted to v:[tag=VB] go h:[word=home] home

corresponding to the above graph query. The
marked words are:

q2 =w:wanted (unconstrained, name:w)
q4 =v:[tag=VB]go (cnstr:tag=VB, name:v)
q5 =h:[word=home]home (cnstr:word=home, name:h)

sentation of the graph, though we may consider adding it in
future versions as an “expert” feature.

7Currently supported properties are word-form (word),
lemma (lemma), pos-tag (tag) or entity type (entity). Ad-
ditional types can be easily added, provided that we have
suitable linguistic annotators for them.

Each of these corresponds to a node vqi in the query
graph above.

Let m be the set of marked query words, and
m+ be a minimal connected subgraph of D that
includes all the words in m. When translating q
to G, each marked word wi ∈ m is translated to a
named query graph node vqi with the appropriate
restriction. The additional words wj ∈ m+ \m are
translated to unrestricted, unnamed nodes vqj . We
add a query graph edge (vqi , vqj , `) for each pair in
V for which (wi, wj , `) ∈ D.

Further query simplifications. Consider the
marked word h:[word=home] home. The constraint
is redundant with the word. In such cases we allow
the user to drop the value, which is then taken from
the corresponding property of the query word. This
allows us to replace the query:

John w:wanted to v:[tag=VB]go h:[word=home]home

with:

John w:wanted to v:[tag]go h:[word]home

This further drives the “by example” agenda, as
the user does not need to know what the lemma,
entity-type or POS-tag of a word are in order to
specify them as a constraint. Full property names
can be replaced with their shorthands w,l,t,e:

John w:wanted to v:[t]go h:[w]home

Finally, capture names can be omitted, in which
case an automatic name is generated based on the
corresponding word:

John :wanted to :[t]go :[w]home

Anchors. In some cases we want to add a node
to the graph, without an explicit capture. In such
cases we can use the anchor $ ($John). These are
interpreted as having a default constraint of [w],
which can be overriden by providing an alternative
constraint ($[e]John), or an empty one ($[]John).

Expansions When matching a query against a
sentence the graph nodes bind to sentence words.
Sometimes, we may want the match to be expanded
to a larger span of the sentence. For example, when
matching a word which is part of a entity, we of-
ten wish to capture the entire entity rather than the
word. This is achieved by prefixing the term with
the “expansion diamond” 〈〉. The default behavior
is to expand the match from the current word to the
named entity boundary or NP-chunk that surrounds
it, if it exists. We are currently investigating the
option of providing additional expansion strategies.



Summary To summarize the query language
from the point of view of the user: the user starts
with a sentence w1, ..., wn, and marks some of the
words for inclusion in the query graph. For each
marked word, the user may specify a name, and op-
tional constraints. The user query is then translated
to a graph query as described above. The results list
highlights the words corresponding to the marked
query words. The user can choose for the results to
highlight entire entities rather than single words.

6 Interactive Pattern Authoring
An important aspect of the system is its interactiv-
ity. Users enter queries by writing a sentence and
adding markup on some words, and can then refine
them following feedback from the environment, as
we demonstrate with a walk-through example.

A user interested in people who obtained
degrees from higher education institutions may
issue the following query:

subj:John obtained his d:[w]degree from inst:Harvard

Here, the person in the “subj” capture and the
institution in the “inst” capture are placeholders
for items to be captured, so the user uses generic
names and leaves them unconstrained. The
“degree” (“d”) capture should match exactly,
as the user specified the “w” constraint (exact
word match). When pressing Enter, the user
is then shown the resulting query-graph and a
result list. The user can then refine their queries
based on either the query graph, the result
list, or both. For the above query, the graph is:

s
Note that the query graph associates each graph

node with the query word that triggered it. The
word “obtained” resulted in a graph node even
though it was not marked by the user as a cap-
ture. The user makes note to themselves to go back
to this word later. The user also notices that the
word “from” is not part of the query.

Looking at the result list, things look weird:

Maybe this is because the word from is not in
the graph? Indeed, adding a non-capturing

exact-word anchor on “from” solves this issue:

subj:John obtained his d:[w]degree $from inst:Harvard

However, the resulting list contains many non-
names in the subj capture. Trying to resolve this,
the user adds an ”entity-type” constraint to the subj
capture:

subj:[e]John obtained his d:[w]degree $from
inst:Harvard

Note that the user didn’t specify an exact type, yet
the query graph correctly resolved PERSON.

The user is interested in the full name of the person
and organization, so they change from single-word
capture to expanded capture, with the default
expansion level (using the diamond prefix 〈〉):

〈〉subj:[e]John obtained his d:[w]degree $from
〈〉inst:Harvard

These are the kind of results the user expected, but
now they are curious about degrees obtained by
females, and their representation in the Wikipedia
corpus. Adding the pronoun to the query, the user
then issues the following two queries, saving the
result-sets from each one as a CSV for further
comparative analysis.

〈〉subj:[e]John obtained $his d:[w]degree $from
〈〉inst:Harvard

〈〉subj:[e]John obtained $her d:[w]degree $from
〈〉inst:Harvard

Our user now worries that they may be missing
some results by focusing on the word degree.
Maybe other things can be obtained from a univer-
sity? The user then sets an exact-word constraint
on “Harvard”, adds a lemma constraint to “obtain”
and clears the constraint from “degree”:

〈〉subj:[e]John :[l]obtained his d:degree $from
〈〉inst:[w]Harvard



Browsing the results, the d capture includes words
such as “BA, PhD, MBA, certificate”. But the
result list is rather short, suggesting that either
Harvard or obtain are too restrictive. The user
seeks to expand the “obtain” node’s vocabulary,
adding back the exact word constraint on “degree”
while removing the one from “obtain”:

〈〉subj:[e]John :[]obtained his d:[w]degree $from
〈〉inst:[w]Harvard

Looking at the result list in the o capture, the
user chooses the lemmas “receive, complete, earn,
obtain, get”, adds them to the o constraint, and
removes the degree constraint.

〈〉subj:[e]John
o:[l=receive|complete|earn|obtain|get]obtained
his d:degree $from 〈〉inst:[w]Harvard

The returned result-set is now much longer, and
we select additional terms for the degree slot and
remove the institution word constraint, resulting in
the final query:

〈〉subj:[e]John
o:[l=receive|complete|earn|obtain|get]obtained his d:
[w=degree|MA|BA|MBA|doctorate|masters|PhD]degree
$from 〈〉inst:Harvard

The result is a list of person names earning
degrees from institution, and the entire list can be
downloaded as a tab-separated file which includes
the named captures as well as the source sen-
tences (over Wikipedia, this list has 6197 rows).8

The query can also be further refined to capture
which degree was obtained, e.g.:

〈〉subj:[e]John o:[l=...]obtained] his kind:law
d:[w=...]degree $from 〈〉inst:Harvard

capturing under kind words like law, chemistry,
engineering and DLitt but also bachelors, masters
and graduate.

This concludes our walk-through.

8The list can be even more comprehensive had we selected
additional degree words and obtain words, and considered
also additional re-phrasings.

7 Additional Query Examples
To whet the reader’s appetite, here are a sample
of additional queries, showing different potential
use-cases. Over wikipedia:
- p:[e]Sam $[l=win|receive]won an $Oscar.
- 〈〉p:[e]Sam $[l=win|receive]won an $Oscar $for

〈〉thing:something
- $fish $such $as 〈〉fish:salmon
- 〈〉hero:[t]Spiderman $is a $superhero
- I like kind:coconut $oil
- kind:coconut $oil is $used for purpose:eating

Over a pubmed corpus, annotated with the SciS-
pacy (Neumann et al., 2019) pipeline:

- 〈〉x:[e]aspirin $inhibits 〈〉y:thing
- a $combination of 〈〉d1:[e]aspirin and

〈〉d2:[e]alcohol $:[l]causes 〈〉t:thing
- 〈〉patients:[t]rats were $injected $with 〈〉what:drugs

8 Implementation Details
The indexing is handled by Lucene.9 We currently
use Odinson (Valenzuela-Escárcega et al., 2020),10

an open-source Lucene-based query engine devel-
oped at Lum.ai, as a successor of Odin (Valenzuela-
Escárcega et al., 2015), that allows to index syn-
tactic graphs and issue efficient path queries on
them. We translate our queries into an Odinson
path query that corresponds to a longest path in
our query graph. We then iterate over the returned
Odinson matches and verify the constraints that
were not on the path. Conceptually, the Odinson
system works by first using Lucene’s reverse-index
for retrieving sentences for which there is a token
matching each of the specified token-constraints,
and then verifying the syntactic between-token con-
straints. To improve the Lucene-query selectivity,
tokens are indexed with incoming and outgoing
syntactic edge label information, which is incorpo-
rated as additional token-constraints to the Lucene
engine. The system easily supports millions of
sentences, returning results at interactive speeds.

9 Conclusions
We introduce a simple query language that allows
to pose complex syntax-based queries, and obtain
results in an interactive speed.

A search interface over Wikipedia sentences
is available at https://allenai.github.io/

spike/. We intend to release the code as open
source, as well as providing hosted open access to
a PubMed-based corpus.

9https://lucene.apache.org
10https://github.com/lum-ai/odinson/
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